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1 Principle Component Analysis for Spiked and Sparse En-
sembles

1.1 Recap: estimation error bound for principle component analysis

In high-dimensional principal component analysis, we observe X1, X2, . . . , Xn
iid∼ X ∈ Rd,

where E[X] = 0 and Cov(X) = Σ ∈ Rn×d. We have the empirical covariance matrix

Σ̂ =
1

n

n∑
i=1

xix
>
i .

The ground truth is
θ∗ = arg max

‖θ‖2=1
〈θ,Σθ〉,

while our estimator is
θ̂ = arg max

‖θ‖2=1
〈θ, Σ̂θ〉.

We want to upper bound the estimation error ‖θ̂ − θ∗‖2.
Last time, he had the following theorem:

Theorem 1.1. Let Σ ∈ Sd×d+ , and let θ∗ ∈ Rd be an eigenvector for λ1(Σ). Let ν =
λ1(Σ) − λ2(Σ) > 0 be the first eigen-gap. Let the perturbation P ∈ Sd×d be such that
‖P‖op < ν/2, and let Σ̂ = Σ + P . If θ̂ ∈ Rd is an eigenvector for λ1(Σ̂), then

‖θ̂ − θ∗‖2 ≤
2‖P̃‖2

ν − 2‖P‖op
.

Here

P̃ = U>PU =

[
P̃1,1 P̃>

P̃ P̃2,2

]
∈ Rd×d,

where U is the orthogonal matrix such that Σ = UΛU> and the blocks of P̃ have sizes[
1× 1 d× (d− 1)

(d− 1)× 1 (d− 1)× (d− 1)

]
.
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1.2 Consequence for a spiked ensemble

In the spiked covariance model, introduced by Jonstone in 2001, we estimate θ∗ ∈ Rd with
‖θ∗‖2 = 1. We observe xi =

√
νξiθ

∗ + wi, where

ξi ∈ R, E[ξi] = 0, E[ξ2
i ] = 1,

wi ∈ Rd E[wi] = 0, E[wiw
>
i ] = Id.

The wi and ξi are independent. If we calculate the covariance structure of xi, we have

E[xix
>
i ] = E(

√
νξiθ

∗ + wi)(
√
νξiθ

∗ + w>i )]

= νθ ∗ (θ∗)> + Id.

This is Σ. The largest eigenvalue is λmax(Σ) = ν + 1. The second largest eigenvalue is
λ2(Σ). So ν = λmax(Σ)−λ2(Σ) is the eigengap, and the leading aigenvector of Σ is θ∗. We
estimate θ by

θ̂ = arg max
‖θ‖2=1

〈θ,Σθ〉.

Our theorem gives us the following bound on ‖θ̂ − θ∗‖2.

Corollary 1.1. Assume ξ ∼ sG(1) and wi ∼ sG(1). If n > d and
√

ν+1
ν2

√
d
n ≤

1
128 , then

‖θ̂ − θ∗‖2 .

√
ν + 1

ν2

√
d

n

with high probability.

If you want this to be ≤ ε, you need n & dν+1
ν2

. For large ν, ‖θ̂ − θ∗‖2 ∼ 1√
ν
.
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Proof. Recall that the theorem says that ‖θ̂ − θ‖2 ≤ 2‖P̃‖2
ν−2‖P‖op . We need to upper bound

‖P̃‖2 and ‖P‖op.

P = Σ̂− Σ

=
1

n

n∑
i=1

(
√
νξθ∗ + wi)(

√
νξiθ

∗ + wi)
> − (νθ∗(θ∗)> + Id)

=

(
1

n

n∑
i=1

ξ2
i − 1

)
νθ∗(θ∗)> +

(
1

n

n∑
i=1

wiw
>
i − Id

)
+

(
1

n

n∑
i=1

ξiw
>
i

)
(θ∗)> + transpose.

So we get

‖P‖op ≤

∣∣∣∣∣ 1n
n∑
i=1

ξ2
i − 1

∣∣∣∣∣︸ ︷︷ ︸
a

ν +

∥∥∥∥∥ 1

n

n∑
i=1

wiw
>
i − Id

∥∥∥∥∥
op︸ ︷︷ ︸

c

+2
√
ν

∥∥∥∥∥ 1

n

n∑
i=1

ξiwi

∥∥∥∥∥
2︸ ︷︷ ︸

b

.

We can also bound

‖P̃‖2 ≤
√
ν

∥∥∥∥∥ 1

n

n∑
i=1

ξiwi

∥∥∥∥∥
2︸ ︷︷ ︸

b

+

∥∥∥∥∥ 1

n

n∑
i=1

wiw
>
i − Id

∥∥∥∥∥
op︸ ︷︷ ︸

c

,

so we just need to bound a, b, c.

By sub-exponential concentration, a .
√

1
n . The term c is a random matrix with

mean 0, and using a metric entropy argument with matrix concentration gives c .
√

d
n .

Similarly, we can show that b .
√

d
n . Given these upper bounds, we get

‖P‖op . ν

√
1

n
+ (
√
ν + 1)

√
d

n
,

‖P̃‖2 . (
√
ν + 1)

√
d

n
.

So if
√

d
n . ν√

ν+1
, then ν − 2‖P‖op ≥ ν

2 . This gives the bound

‖θ̂ − θ∗‖2 .
2‖P̃‖2
ν/2

.

√
ν + 1

ν2

√
d

n
.

Here, we give an example of how to use the metric entropy bound for the term b.∥∥∥∥∥ 1

n

n∑
i=1

εiwi

∥∥∥∥∥
2

= sup
‖ν‖2=1

〈
ν,

1

n

n∑
i=1

εiwi

〉
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= sup
‖ν‖2=1

1

n

n∑
i=1

εi︸︷︷︸
sG(1)

〈wi, ν〉︸ ︷︷ ︸
sG|(1)︸ ︷︷ ︸

sE(1,1)

.

This tells us that

P

(∣∣∣∣∣ 1n
n∑
i=1

εi〈wi, ν〉| ≥ t

∣∣∣∣∣
)
≤ 2 exp(−nmin(t, t2)) ∀ν ∈ Sd−1.

Now let Ω1/4 be a 1/4-cover of Sd−1, so |Ω1/4| ≤ Cd for a constant C. Show that tis implies

sup
ν∈Sd−1

|〈ν, a〉| ≤ 2 sup
ν∈Ω1/4

|〈ν, a〉|.

So we can use a union bound with

P

(∥∥∥∥∥ 1

n

n∑
i=1

εiwi

∥∥∥∥∥
2

≥ t

)
≤ P

(
2 sup
ν∈Ω1/4

1

n

n∑
i=1

εi〈wi, ν〉 ≥ t

)
≤ Cd exp(−nmin{t, t2}).

1.3 Sparse principle component analysis

This is an active research direction. It has been well-studied, but there are some important
properties that are not well-understood. We assume that θ = arg max‖θ‖2=1〈θ,Σθ〉 is
s-sparse, where s� n� d.

In the sparse spiked covariance model, θ∗ ∈ Rd, ‖θ∗‖2 = 1, and |S(θ∗)| . s. We observe

xi =
√
νξiθ

∗ + wi, i ∈ [n],

where ξi sG(1) and wi ∼ sG(1). We have two theoretical questions:

(a) What should the sample size be to get a consistent estimator? We will see that as
long as n� s, there is a consistent estimator.

(b) What is the sample size for a computationally efficient (polynomial time) consistent
estimator? The best known computationally efficient estimator has n� s2.

(c) What happens for s� n� s2? This is an active research direction. It is conjectured
that there exists a computational and statistical gap.
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1.3.1 `1-penalized estimation

To answer part (a), we solve the estimation problem with an added `1 penalty.

• The 1-norm constrained formulation is

θ̂ = arg max
‖θ‖2=1
‖θ‖1≤R

〈θ, Σ̂θ〉.

• The λ-penalized formulation is

θ̂ = arg max
‖θ‖2=1

〈θ, Σ̂θ〉 − λn‖θ‖1.

In this formulation, we need ‖θ‖1 ≤ ( n
log d)1/4 for theoretical analysis.

Theorem 1.2. Assume n & s log d.min{1, ν2

ν+1}. Take λn �
√
ν + 1

√
log d
n . Then

‖θ̂ − θ∗‖2 .

√
ν + 1

ν2

√
s log d

n
.

So the required sample size is & s log d.

Proof. Here are the steps:

1. Use a basic inequality from the zero order optimality condition to derive a determin-
istic upper bound of ‖θ̂ − θ∗‖2 by assuming a deterministic assumption on X. This
is like imposing the RE condition for LASSO.

2. Prove a concentration inequality and plug in the bound.

1.3.2 The semidefinite programing relaxation estimator

The 1-norm constrained formulation

max
‖θ‖2=1
‖θ‖1≤R

〈θ, Σ̂θ〉

is equivalent, by a change of variable Θ = θθ> ∈ Rd×d to

max
tr(Θ)=1∑

j,k |Θj,k|≤R2

rank(Θ)=1

〈Σ̂,Θ〉.

The only nonconvex constraint is the rank constraint. If we drop the rank constraint, then
the optimization problem becomes convex.

Theorem 1.3 (Amini, Wainwright, 2008). If n� s2 log d, then the semidefinite program-
ing solution has rank 1 and is consistent.
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1.3.3 The s� n� s2 regime

What do we know in this regime?

Theorem 1.4 (Berthet, Rigollet, 2013). For s� n� s2, sparse PCA is computationally
harder or equivalent to the planted clique problem in the hard regime.

It is conjectured that no polynomial time algorithm can solve this problem.

1.4 Extra topics we will not cover

This completes our discussion of the material in chapter 7 and 8 of Wainwright’s book.
We will not cover chapters 9, 10, or 11, which generalize the material in chapters 7 and 8.
Some topics these chapters discuss are

• Logistic LASSO

• Phase retrieval (used in imaging science)

• Matrix sensing

• Matrix completion (used in recommendation systems)

Example 1.1. As an example, we will explain matrix completion. We want to estimate
Θ∗ ∈ Rd1×d2 , where Θ∗ = UV >, U ∈ Rd1×r, V ∈ Rd2×r, and r � min{d1, d2}. We can, for
example, think of Θi,j as the score of user i given to movie j. Then Ui is user i’s feature,
and Vj is movie j’s feature.

We observe {Mi,j = Θ∗i,j + εi,j}(i,j)∈Ω, and we want to estimate Θ∗ ∈ Rd1×d2 . How
many samples is required?

The MLE estimator is
min

rank(Θ)≤r
‖Mi,j −Θi,j‖22.

This rank constraint is not convex, so we can relax it to a constraint ‖Θ‖∗ ≤ r on the
nuclear norm.
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