Statistics 210B Lecture 22 Notes

Daniel Raban
April 12, 2022

1 Principle Component Analysis for Spiked and Sparse Ensembles

1.1 Recap: estimation error bound for principle component analysis

In high-dimensional principal component analysis, we observe $X_{1}, X_{2}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} X \in \mathbb{R}^{d}$, where $\mathbb{E}[X]=0$ and $\operatorname{Cov}(X)=\Sigma \in \mathbb{R}^{n \times d}$. We have the empirical covariance matrix

$$
\widehat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top} .
$$

The ground truth is

$$
\theta^{*}=\underset{\|\theta\|_{2}=1}{\arg \max }\langle\theta, \Sigma \theta\rangle,
$$

while our estimator is

$$
\widehat{\theta}=\underset{\|\theta\|_{2}=1}{\arg \max }\langle\theta, \widehat{\Sigma} \theta\rangle .
$$

We want to upper bound the estimation error $\left\|\widehat{\theta}-\theta^{*}\right\|_{2}$.
Last time, he had the following theorem:
Theorem 1.1. Let $\Sigma \in S_{+}^{d \times d}$, and let $\theta^{*} \in \mathbb{R}^{d}$ be an eigenvector for $\lambda_{1}(\Sigma)$. Let $\nu=$ $\lambda_{1}(\Sigma)-\lambda_{2}(\Sigma)>0$ be the first eigen-gap. Let the perturbation $P \in S^{d \times d}$ be such that $\|P\|_{\mathrm{op}}<\nu / 2$, and let $\widehat{\Sigma}=\Sigma+P$. If $\widehat{\theta} \in \mathbb{R}^{d}$ is an eigenvector for $\lambda_{1}(\widehat{\Sigma})$, then

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2} \leq \frac{2\|\widetilde{P}\|_{2}}{\nu-2\|P\|_{\mathrm{op}}}
$$

Here

$$
\widetilde{P}=U^{\top} P U=\left[\begin{array}{cc}
\widetilde{P}_{1,1} & \widetilde{P}^{\top} \\
\widetilde{P} & \widetilde{P}_{2,2}
\end{array}\right] \in \mathbb{R}^{d \times d},
$$

where U is the orthogonal matrix such that $\Sigma=U \Lambda U^{\top}$ and the blocks of \widetilde{P} have sizes

$$
\left[\begin{array}{cc}
1 \times 1 & d \times(d-1) \\
(d-1) \times 1 & (d-1) \times(d-1)
\end{array}\right] .
$$

1.2 Consequence for a spiked ensemble

In the spiked covariance model, introduced by Jonstone in 2001, we estimate $\theta^{*} \in \mathbb{R}^{d}$ with $\left\|\theta^{*}\right\|_{2}=1$. We observe $x_{i}=\sqrt{\nu} \xi_{i} \theta^{*}+w_{i}$, where

$$
\begin{aligned}
& \xi_{i} \in \mathbb{R}, \quad \mathbb{E}\left[\xi_{i}\right]=0, \quad \mathbb{E}\left[\xi_{i}^{2}\right]=1, \\
& w_{i} \in \mathbb{R}^{d} \mathbb{E}\left[w_{i}\right]=0, \quad \mathbb{E}\left[w_{i} w_{i}^{\top}\right]=I_{d} .
\end{aligned}
$$

The w_{i} and ξ_{i} are independent. If we calculate the covariance structure of x_{i}, we have

$$
\begin{aligned}
\mathbb{E}\left[x_{i} x_{i}^{\top}\right] & \left.=\mathbb{E}\left(\sqrt{\nu} \xi_{i} \theta^{*}+w_{i}\right)\left(\sqrt{\nu} \xi_{i} \theta^{*}+w_{i}^{\top}\right)\right] \\
& =\nu \theta *\left(\theta^{*}\right)^{\top}+I_{d} .
\end{aligned}
$$

This is Σ. The largest eigenvalue is $\lambda_{\max }(\Sigma)=\nu+1$. The second largest eigenvalue is $\lambda_{2}(\Sigma)$. So $\nu=\lambda_{\max }(\Sigma)-\lambda_{2}(\Sigma)$ is the eigengap, and the leading aigenvector of Σ is θ^{*}. We estimate θ by

$$
\widehat{\theta}=\underset{\|\theta\|_{2}=1}{\arg \max }\langle\theta, \Sigma \theta\rangle .
$$

Our theorem gives us the following bound on $\left\|\widehat{\theta}-\theta^{*}\right\|_{2}$.
Corollary 1.1. Assume $\xi \sim \mathrm{sG}(1)$ and $w_{i} \sim \mathrm{sG}(1)$. If $n>d$ and $\sqrt{\frac{\nu+1}{\nu^{2}}} \sqrt{\frac{d}{n}} \leq \frac{1}{128}$, then

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2} \lesssim \sqrt{\frac{\nu+1}{\nu^{2}}} \sqrt{\frac{d}{n}}
$$

with high probability.
If you want this to be $\leq \varepsilon$, you need $n \gtrsim d \frac{\nu+1}{\nu^{2}}$. For large $\nu,\left\|\widehat{\theta}-\theta^{*}\right\|_{2} \sim \frac{1}{\sqrt{\nu}}$.

Figure 8.4 Plots of the error $\left\|\widehat{\theta}-\theta^{*}\right\|_{2}$ versus the signal-to-noise ratio, as measured by the eigengap v. Both plots are based on a sample size $n=500$. Dots show the average of 100 trials, along with the standard errors (crosses). The full curve shows the theoretical bound $\sqrt{\frac{v+1}{v^{2}}} \sqrt{\frac{d}{n}}$. (a) Dimension $d=100$. (b) Dimension $d=250$.

Proof. Recall that the theorem says that $\|\widehat{\theta}-\theta\|_{2} \leq \frac{2\|\widetilde{P}\|_{2}}{\nu-2\|P\|_{\text {op }}}$. We need to upper bound $\|\widetilde{P}\|_{2}$ and $\|P\|_{\text {op }}$.

$$
\begin{aligned}
P & =\widehat{\Sigma}-\Sigma \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\sqrt{\nu} \xi \theta^{*}+w_{i}\right)\left(\sqrt{\nu} \xi_{i} \theta^{*}+w_{i}\right)^{\top}-\left(\nu \theta^{*}\left(\theta^{*}\right)^{\top}+I_{d}\right) \\
& =\left(\frac{1}{n} \sum_{i=1}^{n} \xi_{i}^{2}-1\right) \nu \theta^{*}\left(\theta^{*}\right)^{\top}+\left(\frac{1}{n} \sum_{i=1}^{n} w_{i} w_{i}^{\top}-I_{d}\right)+\left(\frac{1}{n} \sum_{i=1}^{n} \xi_{i} w_{i}^{\top}\right)\left(\theta^{*}\right)^{\top}+\text { transpose } .
\end{aligned}
$$

So we get

$$
\|P\|_{\mathrm{op}} \leq \underbrace{\left|\frac{1}{n} \sum_{i=1}^{n} \xi_{i}^{2}-1\right|}_{a} \nu+\underbrace{\left\|\frac{1}{n} \sum_{i=1}^{n} w_{i} w_{i}^{\top}-I_{d}\right\|_{\mathrm{op}}}_{c}+2 \sqrt{\nu} \underbrace{\left\|\frac{1}{n} \sum_{i=1}^{n} \xi_{i} w_{i}\right\|_{2}}_{b} .
$$

We can also bound

$$
\|\widetilde{P}\|_{2} \leq \sqrt{\nu} \underbrace{\left\|\frac{1}{n} \sum_{i=1}^{n} \xi_{i} w_{i}\right\|_{2}}_{b}+\underbrace{\left\|\frac{1}{n} \sum_{i=1}^{n} w_{i} w_{i}^{\top}-I_{d}\right\|_{\mathrm{op}}}_{c},
$$

so we just need to bound a, b, c.
By sub-exponential concentration, $a \lesssim \sqrt{\frac{1}{n}}$. The term c is a random matrix with mean 0 , and using a metric entropy argument with matrix concentration gives $c \lesssim \sqrt{\frac{d}{n}}$. Similarly, we can show that $b \lesssim \sqrt{\frac{d}{n}}$. Given these upper bounds, we get

$$
\begin{gathered}
\|P\|_{\mathrm{op}} \lesssim \nu \sqrt{\frac{1}{n}}+(\sqrt{\nu}+1) \sqrt{\frac{d}{n}} \\
\|\widetilde{P}\|_{2} \lesssim(\sqrt{\nu}+1) \sqrt{\frac{d}{n}}
\end{gathered}
$$

So if $\sqrt{\frac{d}{n}} \lesssim \frac{\nu}{\sqrt{\nu}+1}$, then $\nu-2\|P\|_{\text {op }} \geq \frac{\nu}{2}$. This gives the bound

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2} \lesssim \frac{2\|\widetilde{P}\|_{2}}{\nu / 2} \lesssim \sqrt{\frac{\nu+1}{\nu^{2}}} \sqrt{\frac{d}{n}}
$$

Here, we give an example of how to use the metric entropy bound for the term b.

$$
\left\|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} w_{i}\right\|_{2}=\sup _{\|\nu\|_{2}=1}\left\langle\nu, \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} w_{i}\right\rangle
$$

$$
=\sup _{\|\nu\|_{2}=1} \frac{1}{n} \sum_{i=1}^{n} \underbrace{\varepsilon_{i}}_{\mathrm{sE}(1,1)} \underbrace{\left\langle w_{i}, \nu\right\rangle}_{\mathrm{SG}(1)} .
$$

This tells us that

$$
\mathbb{P}\left(\left.\left|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}\left\langle w_{i}, \nu\right\rangle\right| \geq t \right\rvert\,\right) \leq 2 \exp \left(-n \min \left(t, t^{2}\right)\right) \quad \forall \nu \in S^{d-1}
$$

Now let $\Omega_{1 / 4}$ be a $1 / 4$-cover of S^{d-1}, so $\left|\Omega_{1 / 4}\right| \leq C^{d}$ for a constant C. Show that tis implies

$$
\sup _{\nu \in S^{d-1}}|\langle\nu, a\rangle| \leq 2 \sup _{\nu \in \Omega_{1 / 4}}|\langle\nu, a\rangle| .
$$

So we can use a union bound with

$$
\begin{aligned}
\mathbb{P}\left(\left\|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} w_{i}\right\|_{2} \geq t\right) & \leq \mathbb{P}\left(2 \sup _{\nu \in \Omega_{1 / 4}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}\left\langle w_{i}, \nu\right\rangle \geq t\right) \\
& \leq C^{d} \exp \left(-n \min \left\{t, t^{2}\right\}\right) .
\end{aligned}
$$

1.3 Sparse principle component analysis

This is an active research direction. It has been well-studied, but there are some important properties that are not well-understood. We assume that $\theta=\arg \max _{\|\theta\|_{2}=1}\langle\theta, \Sigma \theta\rangle$ is s-sparse, where $s \ll n \ll d$.

In the sparse spiked covariance model, $\theta^{*} \in \mathbb{R}^{d},\left\|\theta^{*}\right\|_{2}=1$, and $\left|S\left(\theta^{*}\right)\right| \lesssim s$. We observe

$$
x_{i}=\sqrt{\nu} \xi_{i} \theta^{*}+w_{i}, \quad i \in[n],
$$

where $\xi_{i} \mathrm{sG}(1)$ and $w_{i} \sim \mathrm{sG}(1)$. We have two theoretical questions:
(a) What should the sample size be to get a consistent estimator? We will see that as long as $n \gg s$, there is a consistent estimator.
(b) What is the sample size for a computationally efficient (polynomial time) consistent estimator? The best known computationally efficient estimator has $n \gg s^{2}$.
(c) What happens for $s \ll n \ll s^{2}$? This is an active research direction. It is conjectured that there exists a computational and statistical gap.

1.3.1 $\quad \ell_{1}$-penalized estimation

To answer part (a), we solve the estimation problem with an added ℓ_{1} penalty.

- The 1-norm constrained formulation is

$$
\widehat{\theta}=\underset{\substack{\|\theta\|_{2}=1 \\\|\theta\|_{1} \leq R}}{\arg \max }\langle\theta, \widehat{\Sigma} \theta\rangle .
$$

- The λ-penalized formulation is

$$
\widehat{\theta}=\underset{\|\theta\|_{2}=1}{\arg \max }\langle\theta, \widehat{\Sigma} \theta\rangle-\lambda_{n}\|\theta\|_{1} .
$$

In this formulation, we need $\|\theta\|_{1} \leq\left(\frac{n}{\log d}\right)^{1 / 4}$ for theoretical analysis.
Theorem 1.2. Assume $n \gtrsim s \log d$. $\min \left\{1, \frac{\nu^{2}}{\nu+1}\right\}$. Take $\lambda_{n} \asymp \sqrt{\nu+1} \sqrt{\frac{\log d}{n}}$. Then

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2} \lesssim \sqrt{\frac{\nu+1}{\nu^{2}}} \sqrt{\frac{s \log d}{n}} .
$$

So the required sample size is $\gtrsim s \log d$.
Proof. Here are the steps:

1. Use a basic inequality from the zero order optimality condition to derive a deterministic upper bound of $\left\|\widehat{\theta}-\theta^{*}\right\|_{2}$ by assuming a deterministic assumption on X. This is like imposing the RE condition for LASSO.
2. Prove a concentration inequality and plug in the bound.

1.3.2 The semidefinite programing relaxation estimator

The 1-norm constrained formulation

$$
\max _{\substack{\|\theta\|_{2}=1 \\\|\theta\|_{1} \leq R}}\langle\theta, \widehat{\Sigma} \theta\rangle
$$

is equivalent, by a change of variable $\Theta=\theta \theta^{\top} \in \mathbb{R}^{d \times d}$ to

$$
\max _{\substack{\operatorname{tr}(\Theta)=1 \\
\sum_{\begin{subarray}{c}{j, k \\
\text { rank } \\
\operatorname{rank}(\Theta)=1} }}\langle\widehat{\Sigma}, \Theta\rangle .} \\
{\left\langle\Theta R^{2}\right.}\end{subarray}}\langle\widehat{\Theta} .
$$

The only nonconvex constraint is the rank constraint. If we drop the rank constraint, then the optimization problem becomes convex.
Theorem 1.3 (Amini, Wainwright, 2008). If $n \gg s^{2} \log d$, then the semidefinite programing solution has rank 1 and is consistent.

1.3.3 The $s \ll n \ll s^{2}$ regime

What do we know in this regime?
Theorem 1.4 (Berthet, Rigollet, 2013). For $s \ll n \ll s^{2}$, sparse PCA is computationally harder or equivalent to the planted clique problem in the hard regime.

It is conjectured that no polynomial time algorithm can solve this problem.

1.4 Extra topics we will not cover

This completes our discussion of the material in chapter 7 and 8 of Wainwright's book. We will not cover chapters 9,10 , or 11 , which generalize the material in chapters 7 and 8 . Some topics these chapters discuss are

- Logistic LASSO
- Phase retrieval (used in imaging science)
- Matrix sensing
- Matrix completion (used in recommendation systems)

Example 1.1. As an example, we will explain matrix completion. We want to estimate $\Theta^{*} \in \mathbb{R}^{d_{1} \times d_{2}}$, where $\Theta^{*}=U V^{\top}, U \in \mathbb{R}^{d_{1} \times r}, V \in \mathbb{R}^{d_{2} \times r}$, and $r \ll \min \left\{d_{1}, d_{2}\right\}$. We can, for example, think of $\Theta_{i, j}$ as the score of user i given to movie j. Then U_{i} is user i 's feature, and V_{j} is movie j 's feature.

We observe $\left\{M_{i, j}=\Theta_{i, j}^{*}+\varepsilon_{i, j}\right\}_{(i, j) \in \Omega}$, and we want to estimate $\Theta^{*} \in \mathbb{R}^{d_{1} \times d_{2}}$. How many samples is required?

The MLE estimator is

$$
\min _{\operatorname{rank}(\Theta) \leq r}\left\|M_{i, j}-\Theta_{i, j}\right\|_{2}^{2}
$$

This rank constraint is not convex, so we can relax it to a constraint $\|\Theta\|_{*} \leq r$ on the nuclear norm.

